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THE OPTIMIZATION OF LINEAR MULTIPLE REGRESSION

MODELS THROUGH THE METHOD OF FORWARD SELECTION

FELICIA ZĂVOIANU AND CONSTANTIN ZĂVOIANU

Abstract. This article refers to the problem of optimizing linear multiple regression
models through the method of forward selection. Therefore, the techniques for select-
ing the variables that can be inserted into the model are presented and the optimiza-
tion algorithm is described. The algorithm is implemented on territorial statistical
data that partially characterize the labour market.

1. Techniques For Selecting The Variables That Can Enter The Model

Let there:

YR = α0 + α1X1 + α2X2 + · · ·+ αi−1Xi−1 + αi+1Xi+1 + · · ·+ αpXp + u

be a multiple regression model in which (p− 1) factorial variables have been inserted (the
partial model) and

YE = α0 + α1X1 + α2X2 + · · ·+ αi−1Xi−1 + αiXi + αi+1Xi+1 + · · ·+ αpXp + u

the model obtained by inserting the factorial variable Xi (the extended model).
We mark up with SR and SE the sum of squares SPreg that correspond to the two

models and with SZ the residua variance of the second model, viz.:

SR = SP
(R)
reg =

∑n
i=1

(

ŷ
(R)
i − ȳ

)2

, a sum with (p− 1) degrees of freedom;

SE = SP
(E)
reg =

∑n
i=1

(

ŷ
(E)
i − ȳ

)2

, a sum with p degrees of freedom;

SZ =
SP

(E)
rez

n− p− 1
=

∑n
i=1

(

yi − ŷ
(E)
i

)

n− p− 1
.

The difference SE−SR represents the contribution to SP
(E)
reg of the ai coefficient on the

assumption that all the other terms were in the model and that the model was extended
by adding the term αiXi. With regard to the above statement and taking into account
the fact that the sum SE − SR has only one degree of freedom, for any i, the difference

SE − SR can be compared to SP
(E)
rez using the F test. Such a test is named the partial

F-test of αi. Although the test is performed on the αi coefficient, we shall say that the
factorial variable Xi is being tested and therefore, the partial F -test can be used as a
criterion for inserting a new factorial variable into a model.

The SE −SR statistic has, as it has been previously stated, only one degree of freedom

and the SP
(E)
rez statistic has (n− p− 1) degrees of freedom. As such, the F ∗

Xi
= SE−SR

SP
(E)
rez

·
n−p−1

1 statistic has an F distribution with 1 and (n − p − 1) degrees of freedom. If

F ∗

Xi
> Fα;1,n−p−1, the H

(i)
0 : αi = 0 assumption will be invalidated and therefore, the
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factorial variable Xi can be inserted into the model, or, in other words, the extended
model is to be preferred to the partial model.

Taking into account the previous notations, the statistic of the partial F -test can also

be expressed: F ∗

Xi
=

SP (E)
reg −SP (R)

reg

SP
(E)
rez

· n−p−1
1 .

One must notice the fact that the statistic of the partial F-test used for checking the

assumption H
(i)
0 : αi = 0 as to the alternative H

(i)
1 : αi 6= 0 can also be determined in

another way, which is that it equals the square of the t∗i = ai

s(ai)
statistic, i.e. F ∗

Xi
=

(t∗i )
2
=

a2
i

s2(ai)
, i = 1, p.

2. The Optimization Algorithm

The algorithm for optimizing linear multiple regression models through the method of
forward selection starts with no initial factorial variables included in the model and has
the following steps:

(1) Selecting the first variable that will be inserted into the model . The
correlation coefficients r1, r2, . . . , rp between the resulting variable Y and the fac-
torial variables X1, X2, . . . , Xp are calculated, i.e.

rj = ρ(Y,Xj) =
∑n

i=1(xij−x̄j)(yi−ȳ)

n·sXj
·sY

, ∀j = 1, p and then k is determined so that

|rk| = max
i=1,p

{|ri|}; in this way, the factorial variable with the strongest correlation

to the resulting variable is determined. Obviously, this factorial variable is Xk.
(2) Adjusting the model corresponding to the selected variable. The model

Y = α0 + αkXk + u is adjusted.

(3) Verifying the insertion criterion. With the help of the F ∗

Xk
=

a2
k

s2(ak)
statistic

the H
(k)
0 : αk = 0 assumption is checked as to the alternative H

(k)
1 : αk 6= 0. If

F ∗

Xk
< Fα;1,n−p−1 then the assumption H

(k)
0 will be accepted, a situation in

which, the estimate of the resulting variable is in fact its selection mean, viz. ȳ.

If F ∗

Xk
> Fα;1,n−p−1, the H

(k)
0 assumption is false and as a result the factorial

variable Xk will be inserted into the model and the Y = a0+ akXk model will be
an optimum partial model.

(4) Selecting a new variable that can be inserted into the model. If an
optimum partial model exists and there are factorial variables that haven’t been
included in the model, the partial model is extended by inserting, one at a time,
each variable that hasn’t been included in this model. If the partial model contains
q factorial variables (at the beginning q = 1), (p− q) extended models will have
to be built. Because the partial model has q degrees of freedom, the extended
models will each have (q+1) degrees of freedom. Let there Iq be the set of indices
of the factorial variables in the partial model. For each extended model, the F ∗

Xi

statistics are calculated, for those Xi that are not in the partial model, i.e.

F ∗

Xi
=

SP (E)
reg −SP (R)

reg

SP
(E)
rez

· n−q−1
1 , ∀i /∈ Iq and the value of k is determined so that

F ∗

Xk
= max

i/∈Iq

{

|F ∗

Xi
|
}

. The Xk variable can be inserted into the model if the

insertion criterion is satisfied.
(5) Verifying the insertion criterion . The F ∗

Xk
statistic has an F distribution

with 1 and (n− q− 1) degrees of freedom. If F ∗

Xk
> Fα;1,n−q−1 the H

(k)
0 : αk = 0

will be invalidated and as a result the factorial variable Xk can be inserted into
the model, or, in other words, the extended model is to be preferred to the partial

model. Therefore, if the H
(k)
0 : αk = 0 assumption is false, the extended model,
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in which the factorial variable Xk has been inserted, will be maintained as it is
considered to be an optimum partial model and the procedure described above

will be resumed. By contrast, if the H
(k)
0 : αk = 0 assumption is true, the partial

model available at this stage will be considered optimum.

(6) Extending the model by inserting the selected variable. If the H
(k)
0 : αk =

0 assumption is false, i.e. F ∗

Xk
> Fα;1,n−q−1, the optimum partial model from

the previous step will be extended by inserting the Xk variable and thus, a new
optimum partial model will be obtained.

(7) Steps 4, 5 and 6 will be repeated for the optimum partial model at hand

until no new factorial variable can be inserted into the model. The last optimum
partial model is in fact the optimum model we have been searching for.

Checking the validness of the optimum model. The F ∗ =
SPreg

SPrez
· n−q−1

q statistic,

which has an F distribution with q and (n−q−1) degrees of freedom, is computed. With
the help of this statistic the H0 : α1 = α2 = · · ·αq = 0 assumption can be verified as to
the alternative H1 assumption: an i exists so that αi 6= 0; testing is not extended for the
free term αo. If F ∗ > Fα; q , (n−q−1) the H0 assumption will be invalidated, therefore a
significant statistical regression has been obtained meaning that the model is valid and
the additional elements of the regression can be determined. In scientific literature, it is
recommended to use a regression model as a forecast tool if the F ∗ statistic is four times
larger than the tabled value.

3. The Optimization Of The Multiple Regression Model Regarding The

Economic Dependency Rate

After conducting a study regarding the Romanian labour market during the transi-
tion period, a study based on representative indicators, an accelerated growth of the
values of the economic dependency rate at a district level has been recorded. This growth
has obvious negative economic and social consequences. The study has shown the fact
that statistical connections, made evident by the values of the correlation coefficients,
exist between the economic dependency rate indicator and the following indicators: the

percentage of work resources in the total population, the labour force employment rate,
the unemployment rate, the percentage of population working in the primary sector, the
percentage of population working in the secondary sector. Thus, for the territorial sta-
tistical data from 2002, presented in table 2, the correlation coefficients between Y and
Xi , i = 1, 5 , marked up with ri = ρ(Y,Xi) are shown in table 1.

Table 1.
Xi X1 X2 X3 X4 X5

ri = ρ(Y,Xi) -0.4423 -0.9292 0.5103 0.5099 -0.4904

In this context, the study regarding the behavior of the economic dependency rate is
suited to the employment of multiple regression models. The completely adjusted model,
obtained through the least squares method, which has been validated from a statistical
point of view is:

Y = 739.0814− 4.5025 ∗X1 − 4.7399 ∗X2 + 0.0482 ∗X3 − 0.0640 ∗X4 − 0.0026 ∗X5

1
X1 - the percentage of work resources in the total population (%); X2 - the labour force employment

rate (%); X3 - the unemployment rate (%); X4 - the percentage of population working in the primary
sector (%); X5 - the percentage of population working in the secondary sector (%).

2
Y - the economic dependency rate (number of unemployed persons per 100 employed persons).
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Table 2
DISTRICT Factorial variables1 Dependent

variable2

X1 X2 X3 X4 X5 Y
BC 69.4399 47.9541 9.4024 34.9341 34.6791 200.3073
BT 65.4500 54.2547 11.0231 56.8408 19.2164 181.6132
IS 66.5811 55.6712 9.6944 38.1770 27.9062 169.7853
NT 70.0171 53.1350 10.6590 49.5395 24.8182 168.7911
SV 67.0140 55.2078 10.3021 52.0220 20.7303 170.2925
VS 66.3902 49.3201 15.8682 56.5772 22.0134 205.4020
BR 69.0932 49.5272 9.9607 38.2146 33.5944 192.2271
BZ 66.7633 54.5143 9.3437 49.3355 23.0343 174.7586
CT 71.9322 53.3023 8.6895 29.0664 26.0029 160.8136
GL 70.7192 47.1533 14.7788 36.6409 28.9932 199.8819
TL 69.8556 48.1655 9.6411 44.4959 26.3036 197.2097
VR 67.7449 55.8642 5.9338 52.6244 22.6312 164.2345
AG 69.8072 57.7946 6.6070 32.7383 38.8910 147.8637
CL 64.6445 48.1303 10.6392 58.7129 18.4158 221.4030
DB 67.3099 55.7780 8.7745 42.8220 28.6627 166.3535
GR 62.4604 49.0207 7.2813 62.6096 12.8289 226.5998
IL 66.0298 50.8104 12.0434 55.7789 18.3920 198.0623
PH 69.6668 50.0176 10.2162 27.4896 39.3499 186.9796
TR 64.4626 61.9056 10.1555 61.5517 17.2414 150.5891
DJ 66.9291 56.1645 7.0501 48.4783 21.9203 166.0257
GJ 67.9834 55.1832 10.7675 33.1727 37.7839 166.5575
MH 67.5476 55.7942 8.7796 52.5087 22.9239 165.3391
OT 67.8240 52.9765 9.9044 55.1763 21.1604 178.3129
VL 67.9826 59.3374 11.6676 42.4115 25.8548 147.8986
AR 68.1029 61.4640 5.0463 29.2809 32.8505 138.8986
CS 69.7448 53.5277 9.7635 41.1576 27.5723 167.8609
HD 71.4594 56.4124 9.7966 25.9959 39.3769 148.0654
TM 68.7057 64.7954 3.9187 29.4235 32.9026 124.6276
BH 68.6918 66.5017 3.2214 39.0591 30.4158 118.9081
BN 68.9960 53.2016 10.0360 47.6399 22.2028 172.4274
CJ 69.2392 61.3874 9.9914 30.2310 31.8045 135.2712
MM 69.2884 56.3592 6.5350 45.5321 26.6566 156.0793
SM 70.9027 57.4090 3.9956 45.5518 29.3645 145.6729
SJ 67.2354 58.4094 7.3422 43.9425 26.5914 154.6355
AB 68.9876 66.8439 10.8496 33.8810 34.2210 116.8538
BV 72.5434 56.0495 11.9184 16.7850 43.9666 145.9407
CV 70.1302 56.0242 9.2090 33.5240 35.9268 154.5183
HG 69.7430 57.5781 7.7101 39.8473 31.3740 149.0244
MS 68.8891 60.1785 6.4324 36.2126 33.5133 141.2172
SB 70.5134 56.0577 7.2508 21.2358 41.6917 152.9838
B-IF 72.1201 56.4481 3.2723 5.5494 35.1500 145.6374

Source: Computations based on the 2003 Statistical yearbook, National Institute of
Statistics.
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The optimization algorithm

I. The correlation coefficients between Y and Xi, i = 1, 5, marked up with ρ(Y,Xi)
are:

Xi X1 X2 X3 X4 X5

ri = ρ(Y,Xi) -0.4423 -0.9292 0.5103 0.5099 -0.4904

Because the maximum absolute value is rmax = |r2| = 0.9292, the variable that can be
inserted into the models isX2, and the initial selected model is Y = 437.4658−4.9042∗X2.
This models is an optimum partial model because F ∗

X2
= 246.4831 > 4.0913 = F0.05 ; 1,39

(the insertion criterion is satisfied).
II. The extended models obtained by inserting the otherXi, i 6= 2 variables, as well as

their associated statistics F ∗

Xi
, are:

Xi The extended model obtained by inserting
the Xivariable

F ∗

Xi

X1 Y = 717.0428− 4.7222 ∗X2 − 4.2282 ∗X1 405.8348
X3 Y = 425.1689− 4.7618 ∗X2 + 0.4925 ∗X3 0.5806
X4 Y = 392.0058− 4.5066 ∗X2 + 0.5719 ∗X4 42.6947
X5 Y = 443.7159− 4.5382 ∗X2 − 0.9318 ∗X5 35.4563

Fmax = F ∗

X1
= 405.8348; so the X1 variable can be inserted into the model. Because

F0.05:1,38 = 4.0982, we observe that Fmax > F0.05:1,38 and as a result the insertion criterion
is satisfied. Consequently, the X1 variable is inserted into the model and Y = 717.0428−
4.7222 ∗X2 − 4.2282 ∗X1 becomes the new optimum partial model.

III. The extended models obtained by inserting the other Xi, i /∈ {2, 1} variables, as
well as their associated statistics F ∗

Xi
, are:

Xi The extended model obtained by inserting the Xivariable F ∗

Xi

X3 Y = 716.2092− 4.7153 ∗X2 − 4.2248 ∗X1 + 0.0245 ∗X3 0.0162
X4 Y = 740.0086− 4.7528 ∗X2 − 4.5022 ∗X1 − 0.0610 ∗X4 0.9946
X5 Y = 728.1021− 4.7421 ∗X2 − 4.4025 ∗X1 + 0.0697 ∗X5 0.5158

Fmax = F ∗

X4
= 0.9946; so the X4 variable can be inserted into the model. Because

F0.05:1,37 = 4.1055, we observe that Fmax < F0.05:1,37 and as a result the insertion criterion
is not satisfied. Consequently, the X4 variable is not inserted into the model and the
optimum model is model obtained in the previous step, viz.:

Y = 717.0428− 4.7222 ∗X2 − 4.2282 ∗X1

The additional elements of the regression are:
The standard error values for the coefficients:
Es( a0 )= 14.6116
Es( a1 )= 0.2071
Es( a2 )= 0.0919
The coefficient of determination: R2= 0.9886
Residual quadratic mean deviation: Su= 2.8062
The F* statistic: F*=1645.5981
The number of degrees of freedom for SPrez : ng=38
The regression sum of squares : SPreg= 25916.8947
The residual sum of squares: SPrez= 299.2353
The optimum model is valid from a statistical point of view because
F* > 4*Finv(0.05; 2,38) i.e. 1645.5981 > 12.9792.
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4. Conclusions

(1) The conclusion I have reached after conducting this study was that the optimiza-
tion through the method of forward selection offers the advantage of successively
inserting into the model only those variables that have statistically important
coefficients of regression, thus progressively building an optimum model from a
previous optimum partial model.

(2) This method of optimization is an “excellent remedy” for reducing the multi-
collinearity phenomenon that can in fact be regarded as being “omnipresent”
because of the multiple interdependencies that exist in the economy.
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