ON A SHARP INEQUALITY FOR THE MEDIANS OF A TRIANGLE

JIAN LIU

ABSTRACT. In this paper, we prove that the known inequality which involving the upper bounds of median sums for the triangle is sharp. We also prove a stronger conjecture for this inequality, which is equivalent to a inequality posed by H.Y.Yin in [1]. Finally, a similar conjecture checked by the computer is put forward.

1. INTRODUCTION

Let ABC be a triangle with medians m_a, m_b, m_c and semi-perimeter s, then we have the simple inequality (see [2]):

$$m_a + m_b + m_c < 2s,\tag{1}$$

where constant 2 is optimal.

In 2000, Chu Xiao-Guang and Yang Xue-Zhi [3] established a stronger inequality:

Theorem 1. In any triangle ABC with medians m_a, m_b, m_c , semi-perimeter s, inradius r, and circumradius R, the following inequality holds:

$$(m_a + m_b + m_c)^2 \le 4s^2 - 16Rr + 5r^2.$$
⁽²⁾

The equality if and only if triangle ABC is equilateral.

The inequality (2) gives an excellent upper bound of expression $(m_a + m_b + m_c)^2$. But the authors of the paper [3] have not considered a natural question: Find the maximum value for λ such that inequality

$$(m_a + m_b + m_c)^2 \le 4s^2 - \lambda Rr + (2\lambda - 27)r^2 \tag{3}$$

holds for all triangle ABC.

One of the aim of this paper is to prove the following related conclusion:

Theorem 2. Let λ be positive real numbers such that inequality (3) holds for all triangle ABC, then $\lambda_{max} = 16$.

The inequality (3) just becomes (2) when k = 16. This means that inequality (2) is the strongest one in all inequalities such as (3). Out of the blue, Sun Wen-Cai recently posed a stronger conjecture (in a personal communication), he guessed the inequality below holds:

Theorem 3. In any triangle ABC with sides a, b, c, medians m_a, m_b, m_c , inradius r, and circumradius R, the following inequality holds:

$$\frac{(m_a + m_b + m_c)^2}{a^2 + b^2 + c^2} \le 2 + \frac{r^2}{R^2}.$$
(4)

The equality if and only if triangle ABC is equilateral.

²⁰¹⁰ Mathematics Subject Classification. 51M16.

Key words and phrases. triangle, median, Euler inequality, Gerretsen inequality, L'Hôpital Rule.

By applying the known identity $a^2 + b^2 + c^2 = 2s^2 - 8Rr - 2r^2$ and Euler inequality (see [2], [4]):

$$R \ge 2r,\tag{5}$$

we can easily show that inequality (4) is stronger than (2).

After Sun posed inequality (4), I soon found that it is equivalent to the following conjecture inequality which was posed by Yin Hua Yan [1] in 2000:

$$\frac{m_b m_c + m_c m_a + m_a m_b}{a^2 + b^2 + c^2} \le \left(\frac{5}{8} + \frac{r^2}{2R^2}\right).$$
(6)

In the fact, by the well known identity

$$m_a^2 + m_b^2 + m_c^2 = \frac{3}{4}(a^2 + b^2 + c^2).$$
 (7)

we can easily know that inequality (4) is equivalent to (6).

In Section 3, we will prove inequality (4) by applying the method of R - r - s, see [5]-[6].

2. The Proof of Theorem 2

Proof. If $R \neq 2r$, then the inequality (2) is equivalent to

$$\lambda \le \frac{4s^2 - 27r^2 - (m_a + m_b + m_c)^2}{r(R - 2r)}$$

By the known identities $sr^2 = (s - a)(s - b)(s - c)$, abc = 4Rrs, we further see that the above inequality is equivalent to

$$\lambda \le \frac{4s^3 - 27(s-a)(s-b)(s-c) - s(m_a + m_b + m_c)^2}{abc - 8(s-a)(s-b)(s-c)}.$$
(8)

We now suppose ABC is an isosceles triangle with sides $x, 1, 1(x \neq 1)$, putting b = c = 1, a = x, then using median formula $m_a = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}$ and the known identities:

$$s = \frac{1}{2}(a+b+c), \ R = \frac{abc}{4\sqrt{(s-a)(s-b)(s-c)}}, \ r = \sqrt{\frac{(s-a)(s-b)(s-c)}{s}},$$

we get

$$s = \frac{1}{2}x + 1, \ m_a = \frac{1}{2}\sqrt{4 - x^2}, \ m_b = m_c = \frac{1}{2}\sqrt{1 + 2x^2}, \ R = \frac{1}{\sqrt{4 - x^2}}, \ r = \frac{x\sqrt{4 - x^2}}{2(x + 2)}.$$

Plugging a = x, b = c = 1 and the above relations into (8), after some calculations we obtain

$$\lambda \le \frac{12x^3 - 22x^2 + 20x - 2(x+2)\sqrt{(4-x^2)(1+2x^2)} + 8}{x(x-1)^2}.$$
(9)

Let

$$f(x) = 12x^3 - 22x^2 + 20x - 2(x+2)\sqrt{(4-x^2)(1+2x^2)} + 8, \ g(x) = x(x-1)^2.$$

Then it follows that

$$f'(x) = \frac{12x^4 + 16x^3 - 28x^2 - 28x - 8 + 4(9x^2 - 11x + 5)\sqrt{(4 - x^2)(1 + 2x^2)}}{\sqrt{(4 - x^2)(1 + 2x^2)}},$$

$$g'(x) = 3x^2 - 4x + 1.$$

Note that

$$\lim_{x \to 0} f(x) = 0, \lim_{x \to 0} g(x) = 0.$$

According to inequality (9) and the L'Hôpital's Rule, we get

$$\lambda \leq \lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{f'(x)}{g'(x)}$$

=
$$\lim_{x \to 0} \frac{12x^4 + 16x^3 - 28x^2 - 28x - 8 + 4(9x^2 - 11x + 5)\sqrt{(4 - x^2)(1 + 2x^2)}}{(3x^2 - 4x + 1)\sqrt{(4 - x^2)(1 + 2x^2)}}$$

= 16.

Thus we complete the proof of Theorem 2.

Remark 1. In [3], Chu Xiao-Guang and Yang Xue-Zhi also obtained inverse inequality of (2):

$$(m_a + m_b + m_c)^2 \ge 4s^2 - 28Rr + 29r^2.$$
⁽¹⁰⁾

In the same way as in the proof of Theorem 2, we can also prove the following conclusion: Let λ be positive real numbers such that

$$(m_a + m_b + m_c)^2 \ge 4s^2 - \lambda Rr + (2\lambda - 27)r^2.$$
(11)

holds for all triangles ABC, then $\lambda_{min} = 28$.

3. The Proof of Theorem 3

In order to prove Theorem 3, we need some lemmas.

Lemma 1. ^[3] In all triangle ABC the following inequality holds:

$$4m_b m_c \le 2a^2 + bc - \frac{4s(s-a)(b-c)^2}{2a^2 + bc},\tag{12}$$

with equality if and only if b = c.

Lemma 2. In all triangle ABC the following inequalities hold:

$$16Rr - 5r^2 \le s^2 \le \frac{R(4R+r)^2}{2(2R-r)},\tag{13}$$

with equality if and only if $\triangle ABC$ is equilateral.

The first inequality

$$s^2 \ge 16Rr - 5r^2 \tag{14}$$

is the well-known Gerretsen inequality (see [2],[4]). The second inequality

$$s^{2} \le \frac{R(4R+r)^{2}}{2(2R-r)} \tag{15}$$

is Kooi inequality (see [2]), which is stronger than another Gerretsen inequality:

$$s^2 \le 4R^2 + 4Rr + 3r^2. \tag{16}$$

In addition, Kooi inequality is equivalent to Garfunkel-Bankoff inequality (see [7]-[9]):

$$\tan^2 \frac{A}{2} + \tan^2 \frac{B}{2} + \tan^2 \frac{C}{2} \ge 2 - 8\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}.$$
 (17)

where A, B, C are the angles of triangle ABC. In [10], the author gave a generalization of the equivalent form of the above inequality.

Lemma 3. In all triangle ABC the following inequality holds:

$$8Rr(115R^{2} + 47r^{2})s^{4} + (64R^{6} - 8448rR^{5} + 6484R^{4}r^{2} - 35204R^{3}r^{3} + 9260R^{2}r^{4} - 1912Rr^{5} + 80r^{6})s^{2} + 4r(292R^{5} - 485R^{4}r + 1727R^{3}r^{2} + 137R^{2}r^{3} + 16Rr^{4} + 4r^{5})(4R + r)^{2} \ge 0,$$
(18)

with equality if and only if triangle ABC if equilateral.

Proof. We denote the right hand side of (18) by $Q_1(s^2)$ in which s^2 is being seen as a variable and put

$$T = 16Rr(115R^{2} + 47r^{2})s^{2} + 64R^{6} - 8448rR^{5} + 6484R^{4}r^{2} - 35204R^{3}r^{3} + 9260R^{2}r^{4} - 1912Rr^{5} + 80r^{6}.$$

We will prove inequality $Q_1(s^2) \ge 0$ divides into two cases.

Case 1. $T \ge 0$.

According to the property of parabolas and Gerretsen's inequality chain $16Rr - 5r^2 \leq s^2 \leq 4R^2 + 4Rr + 3r^2$, $Q_1(s^2)$ is monotone increasing on interval $[16Rr - 5r^2, 4R^2 + 4Rr + 3r^2]$ in this case. Therefore, in order to prove $Q_1(s^2) \geq 0$ we need to prove that $Q_1(16Rr - 5r^2) \geq 0$, namely

$$\begin{split} & 8Rr(115R^2+47r^2)(16Rr-5r^2)^2+(64R^6-8448rR^5+6484R^4r^2-35204R^3r^3\\ &+9260R^2r^4-1912Rr^5+80r^6)(16Rr-5r^2)+4r(292R^5-485R^4r+1727R^3r^2\\ &+137R^2r^3r+16Rr^4+4r^5)(4R+r)^2\geq 0, \end{split}$$

after simplifying, that is

$$8r(R-2r)(2464R^6 - 14720R^5r + 30270R^4r^2 - 24559R^3r^3 + 7851R^2r^4 - 1265Rr^5 + 24r^6) \ge 0$$

By Euler's inequality (5), it suffices to prove that

 $2464R^6 - 14720R^5r + 30270R^4r^2 - 24559R^3r^3 + 7851R^2r^4 - 1265Rr^5 + 24r^6 > 0, (19)$ which is equivalent to

$$2464d^6 + 14848d^5r + 30910d^4r^2 + 23041d^3r^3 + (737d^2 - 441dr + 3402r^2)r^4 > 0,$$

where $d = R - 2r \ge 0$. It is easy to show that $737d^2 - 441dr + 3402r^2 > 0$, hence inequality (19) is proved. The proof of inequality (18) in the first case is complete.

Case 2. T < 0.

We can get the following identity:

$$2Q_1(s^2) = -t_2T + M_1t_1 + 16drM_2 + 256d^8, (20)$$

where

$$\begin{split} &d = R - 2r \\ &t_1 = s^2 - 16Rr + 5r^2, \\ &t_2 = 4R^2 + 4Rr + 3r^2 - s^2, \\ &M_1 = 64d^6 - 320d^5r + 6804d^4r^2 + 50796d^3r^3 + 112788d^2r^4 + 97560dr^5 + 27216r^6, \\ &M_2 = 560d^6 + 1749d^5r - 1442d^4r^2 - 8991d^3r^3 - 1956d^2r^4 + 14529dr^5 + 10206r^6. \end{split}$$

From Euler inequality (5), Gerretsen inequalities (14), (16) and the hypothesis T < 0 we have $d \ge 0, t_1 \ge 0, -t_2T \ge 0$, thus to prove $Q_1(s^2) \ge 0$ we need prove $M_1 > 0, M_2 > 0$. Since $64d^6 - 320d^5r + 6804d^4r^2 = 4d^4(16d^2 - 80dr + 1701r^2) > 0$, hence $M_1 > 0$. By applying the monotonicity of the function, we easily prove that

$$560x^6 + 1749x^5 - 1442x^4 - 8991x^3 - 1956x^2 + 14529x + 10206 > 0.$$
(21)

Then inequality $M_1 > 0$ follows immediately. Thus, we complete the proof of $Q_1(s^2) \ge 0$ in the second case.

Combing the arguments of the two cases, inequality (18) holds for all triangle ABC. The equality in (18) occurs if and only if R = 2r, namely $\triangle ABC$ is equilateral. The proof of Lemma 3 is complete.

Lemma 4. In all triangle ABC the following inequality holds:

$$s^{4} - (4R^{2} + 20Rr - 2r^{2})s^{2} + r(4R + r)^{3} \le 0,$$
(22)

with equality if and only if ABC is isosceles.

Inequality (22) is the fundamental triangle inequality, which has various equivalent forms, see [2], [4], [5], [6], [9].

Lemma 5. In all triangle ABC holds

$$(-R^{2} + 56Rr - 4r^{2})s^{6} + (8R^{4} - 480R^{3}r - 891R^{2}r^{2} + 80Rr^{3} - 12r^{4})s^{4} + (4R + r)(244R^{4} + 1420R^{3}r + 533R^{2}r^{2} + 56Rr^{3} - 12r^{4})s^{2}r - (33R^{2} + 16Rr + 4r^{2})(4R + r)^{4}r^{2} \ge 0,$$
(23)

with equality if and only if triangle ABC is equilateral.

Proof. Denote the right hand side of (26) by Q_2 , we can rewrite it as follows:

$$Q_{2} = (s^{2} - 16Rr + 5r^{2})[(-R^{2} + 56Rr - 4r^{2})s^{4} + (8R^{4} - 496R^{3}r + 10R^{2}r^{2} - 264Rr^{3} + 8r^{4})s^{2} + r(1104R^{5} - 2052R^{4}r + 6192R^{3}r^{2} - 3517R^{2}r^{3} + 1456Rr^{4} - 52r^{5})] + 4r^{2}[2304(R - 2r)^{4} + 14924(R - 2r)^{3}r + 36261(R - 2r)^{2}r^{2} + 39188(R - 2r)r^{3} + 15876r^{4}](R - 2r)^{2}.$$
(24)

So, if the following holds

$$(-R^{2} + 56Rr - 4r^{2})s^{4} + (8R^{4} - 496R^{3}r + 10R^{2}r^{2} - 264Rr^{3} + 8r^{4})s^{2} + r(1104R^{5} - 2052R^{4}r + 6192R^{3}r^{2} - 3517R^{2}r^{3} + 1456Rr^{4} - 52r^{5}) \ge 0, \quad (25)$$

then $Q_2 \ge 0$ follows from the first inequality of Lemma (2) and Euler's inequality (5). If inequality (25) is reverse, by Kooi inequality (15), it is sufficient to prove that

$$\left[\frac{R(4R+r)^2}{2(2R-r)} - 16Rr + 5r^2\right] \left[(-R^2 + 56Rr - 4r^2)s^4 + (8R^4 - 496R^3r + 10R^2r^2 - 264Rr^3 + 8r^4)s^2 + r(1104R^5 - 2052R^4r + 6192R^3r^2 - 3517R^2r^3 + 1456Rr^4 - 52r^5)\right] + 4r^2 \left[2304(R-2r)^4 + 14924(R-2r)^3r + 36261(R-2r)^2r^2 + 39188(R-2r)r^3 + 15876r^4\right] (R-2r)^2 \ge 0.$$
(26)

This can be changed into

$$\frac{R-2r}{2(2R-r)}M_3 \ge 0,$$
(27)

where

$$\begin{split} M_3 &= -(4R-5r)(4R-r)(R^2-56Rr+4r^2)s^4 + 2(4R-5r)(4R-r)(4R^4-248R^3r + 5R^2r^2 - 132Rr^3 + 4r^4)s^2 + r(1104R^5-1956R^4r + 1256R^3r^2 - 856R^2r^3 - 16Rr^4 - 4r^5)(4R+r)^2. \end{split}$$

After analyzing, we obtain the following identity:

$$M_{3} = (16R^{4} + 1413R^{2}r^{2} + 20r^{4}) \left[-s^{4} + (4R^{2} + 20Rr - 2r^{2})s^{2} - r(4R + r)^{3} \right] + 2R(4R - r)(4R - 5r)r^{5} + Q_{1}(s^{2}),$$
(28)

where $Q_1(s^2)$ denotes the value of the right hand side of (18) which is non-negative. Therefore, $M_3 \ge 0$ follows from the fundamental inequality (22), hence inequality (27) is proved.

Combing the above arguments, we deduce that $Q_2 \ge 0$ holds for every triangle. The equality in $Q_2 \ge 0$ is valid when triangle *ABC* is equilateral. The proof of Lemma 5 comes to the end.

We are now in a position to prove Theorem 3. Next, let \sum, \prod denote the cyclic sums and the cyclic products respectively.

Proof. As we have said, inequality (4) is equivalent to (6). So we have to prove that

$$4\sum m_b m_c \le \left(\frac{5}{2} + \frac{2r^2}{R^2}\right) \sum a^2.$$
 (29)

By Lemma 1, it suffices to prove that

$$\sum (2a^2 + bc) - 4s \sum \frac{(s-a)(b-c)^2}{2a^2 + bc} \le \left(\frac{5}{2} + \frac{2r^2}{R^2}\right) \sum a^2,$$

i.e.

$$\sum_{a} a \sum_{b} (b+c-a)(2b^{2}+ca)(2c^{2}+ab)(b-c)^{2} + \left(\frac{R^{2}+4r^{2}}{2R^{2}}\sum_{a} a^{2}-\sum_{b} bc\right) \prod_{c} (2a^{2}+bc) \ge 0.$$

Putting

$$M_4 = 2R^2 \sum a \sum (b+c-a)(2b^2+ca)(2c^2+ab)(b-c)^2 + \left[(R^2+4r^2) \sum a^2 - 2R^2 \sum bc \right] \prod (2a^2+bc).$$
(30)

then we need to prove $M_4 \ge 0$. To do so, we first make some computations.

It is easy to check the identities:

$$\prod (2a^2 + bc) = 9(abc)^2 + 2abc \sum a^3 + 4 \sum b^3 c^3,$$
(31)

and

$$\sum (b+c-a)(2b^{2}+ca)(2c^{2}+ab)(b-c)^{2}$$

= $2\sum bc\sum a^{5}-6abc\sum a^{4}+2\sum b^{2}c^{2}\sum a^{3}-abc\sum bc\sum a^{2}$
 $-5(abc)^{2}\sum a-4\sum a\sum b^{3}c^{3}+14abc\sum b^{2}c^{2}.$ (32)

Then using $\sum a = 2s$ and the following well-known identities:

$$abc = 4Rrs$$
 (33)

$$\sum bc = s^2 + 4Rr + r^2,$$
(34)

$$\sum a^2 = 2s^2 - 8Rr - 2r^2, \tag{35}$$

$$\sum a^3 = 2s^3 - (12Rr + 6r^2)s, \tag{36}$$

$$\sum a^4 = 2s^4 - (16Rr + 12r^2)s^2 + 2r^2(4R + r)^2, \tag{37}$$

$$\sum a^5 = 2s^5 - (20Rr + 20r^2)s^3 + (80R^2r^2 + 60Rr^3 + 10r^4)s,$$
(38)

$$\sum b^2 c^2 = s^4 + (-8Rr + 2r^2)s^2 + (4R + r)^2 r^2, \tag{39}$$

$$\sum b^3 c^3 = s^6 + (-12Rr + 3r^2)s^4 + 3r^4s^2 + r^3(4R + r)^3, \tag{40}$$

We further obtain

$$\prod (2a^2 + bc) = 4s^6 - (32Rr - 12r^2)s^4 + 12(2R - r)^2r^2s^2 + 4(4R + r)^3r^3,$$
(41)

and

$$\sum (b+c-a)(2b^2+ca)(2c^2+ab)(b-c)^2$$

= 16rs³ [(R-4r)s² + r(2R²+25Rr-4r²)]. (42)

Plugging $\sum a = 2s_{1}(34)_{1}(35)_{1}(41)_{1}$, and (42) into the expression of M_{4} , we can get

$$M_4 = 16r^2 M_5, (43)$$

where

$$M_5 = 2s^8 - (17R^2 + 24Rr - 4r^2)s^6 + R(40R^3 + 96R^2r + 69Rr^2 - 32r^3)s^4 - (R - 2r)(4R + r)(12R^3 + 12R^2r + 19Rr^2 - 2r^3)s^2r - (R^2 + 2r^2)(4R + r)^4r^2.$$

Therefore, in order to prove $M_4 \ge 0$ we need to prove that $M_5 \ge 0$. After studying, we get the following identity:

$$M_5 \equiv Q_2 + 2\left[s^4 - (4R^2 + 20Rr - 2r^2)s^2 + r(4R + r)^3\right]^2, \tag{44}$$

where Q_2 is equal to the value of the left hand side of inequality (23). Hence $M_5 \ge 0$, inequality $M_4 \ge 0$ and inequality (29) are proved. It is easy to see that the equality in (29) if and only if triangle *ABC* is equilateral. This completes the proof of Theorem 3.

4. A Conjecture

The author has proved the following refinement of inequality (1):

$$m_a + m_b + m_c < 2(b^2c^2 + c^2a^2 + a^2b^2)^{\frac{1}{4}} < 2s.$$
(45)

This result prompts us to propose a conjecture similar to Theorem 3, which is checked by the computer:

Conjecture 1. In all triangle ABC, the following inequality holds:

$$\frac{(m_a + m_b + m_c)^4}{b^2 c^2 + c^2 a^2 + a^2 b^2} \le 16 - \frac{13r^2}{4R^2}.$$
(46)

Remark 2. We know that inequality (46) can not be derived from inequality (2) or inequality (4).

References

- Hu.-Y.yin, 110 conjecture inequalities involving Ceva segments and radii of a triangle, Research in Inequlities, Tibet People's Press, Lhasa, 2000, 313-322. (in Chinese)
- [2] O.Bottema, R.Ž. Djordjević, R.R. Janić, D.S. Mitrinović, AND P.M. Vasić. Geometric Inequality. Wolters-Noordhoff Publishing, Groningen, The Netherlands, 1969.
- [3] Xi.-G.chu AND Xu.-Z.Yang, On some inequalities involving medians of a triangle, *Research in Inequalities*, Tibet People's Press, Lhasa, 2000, 234-247. (in Chinese)
- [4] D.Mitrinović, J.E.Pečarić AND V.Volenec, Recent Advances in Geometric Inequalities, Kluwer Academic Publishers, Dordrecht, Boston, London, 1989.
- [5] W.J.Blundon, Inequalities associated with the triangle, Canad. Math. Bull., 8(1965), 615-626.
- [6] O.Bottema, Inequalities for R, r and s, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 338-352(1971)27-36.
- [7] J.Garfunkel, Problem 825, Crux Math., 9(1983), 79.
- [8]L.Bankoff, Solution of Problem 825, $Crux\ Math.,\, {\bf 10}(1984),\, 168.$
- [9] Sh.-H.wu AND M.Bencze, An equivalent form of the fundamental triangle inequality, J. Inequal. Pure Appl. Math., 10(1)(2009), Art.16.
- [10] J.Liu, An extension of an equivalent form of the Kooi inequality, Journal of Guizhou University (Natural Sciences)., 23(2)(2005), 60-62. (in Chinese)

EAST CHINA JIAOTONG UNIVERSITY NANCHANG CITY, JIANGXI PROVINCE, 330013, P.R.CHINA *E-mail address*: dfj1680163.com