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ON A SHARP INEQUALITY FOR THE MEDIANS OF A TRIANGLE

JIAN LIU

Abstract. In this paper, we prove that the known inequality which involving the
upper bounds of median sums for the triangle is sharp. We also prove a stronger
conjecture for this inequality, which is equivalent to a inequality posed by H.Y.Yin in
[1]. Finally, a similar conjecture checked by the computer is put forward.

1. Introduction

Let ABC be a triangle with medians ma,mb,mc and semi-perimeter s, then we have
the simple inequality (see [2]):

ma +mb +mc < 2s, (1)

where constant 2 is optimal.
In 2000, Chu Xiao-Guang and Yang Xue-Zhi [3] established a stronger inequality:

Theorem 1. In any triangle ABC with medians ma,mb,mc, semi-perimeter s, inradius
r, and circumradius R, the following inequality holds:

(ma +mb +mc)
2 ≤ 4s2 − 16Rr + 5r2. (2)

The equality if and only if triangle ABC is equilateral.

The inequality (2) gives an excellent upper bound of expression (ma + mb + mc)
2.

But the authors of the the paper [3] have not considered a natural question: Find the
maximum value for λ such that inequality

(ma +mb +mc)
2 ≤ 4s2 − λRr + (2λ− 27)r2 (3)

holds for all triangle ABC.
One of the aim of this paper is to prove the following related conclusion:

Theorem 2. Let λ be positive real numbers such that inequality (3) holds for all triangle
ABC, then λmax = 16.

The inequality (3) just becomes (2) when k = 16. This means that inequality (2) is
the strongest one in all inequalities such as (3). Out of the blue, Sun Wen-Cai recently
posed a stronger conjecture (in a personal communication), he guessed the inequality
below holds:

Theorem 3. In any triangle ABC with sides a, b, c, medians ma,mb,mc, inradius r, and
circumradius R, the following inequality holds:

(ma +mb +mc)
2

a2 + b2 + c2
≤ 2 +

r2

R2
. (4)

The equality if and only if triangle ABC is equilateral.
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By applying the known identity a2 + b2 + c2 = 2s2 − 8Rr − 2r2 and Euler inequality
(see [2], [4]):

R ≥ 2r, (5)

we can easily show that inequality (4) is stronger than (2).
After Sun posed inequality (4), I soon found that it is equivalent to the following

conjecture inequality which was posed by Yin Hua Yan [1] in 2000:

mbmc +mcma +mamb

a2 + b2 + c2
≤

(

5

8
+

r2

2R2

)

. (6)

In the fact, by the well known identity

m2
a +m2

b +m2
c =

3

4
(a2 + b2 + c2). (7)

we can easily know that inequality (4) is equivalent to (6).
In Section 3, we will prove inequality (4) by applying the method of R − r − s, see

[5]-[6].

2. The Proof of Theorem 2

Proof. If R 6= 2r, then the inequality (2) is equivalent to

λ ≤ 4s2 − 27r2 − (ma +mb +mc)
2

r(R − 2r)
,

By the known identities sr2 = (s − a)(s − b)(s− c), abc = 4Rrs, we further see that the
above inequality is equivalent to

λ ≤ 4s3 − 27(s− a)(s− b)(s− c)− s(ma +mb +mc)
2

abc− 8(s− a)(s− b)(s− c)
. (8)

We now suppose ABC is an isosceles triangle with sides x, 1, 1(x 6= 1), putting b = c =

1, a = x, then using median formula ma = 1
2

√
2b2 + 2c2 − a2 and the known identities:

s =
1

2
(a+ b + c), R =

abc

4
√

(s− a)(s− b)(s− c)
, r =

√

(s− a)(s− b)(s− c)

s
,

we get

s =
1

2
x+ 1, ma =

1

2

√

4− x2, mb = mc =
1

2

√

1 + 2x2, R =
1√

4− x2
, r =

x
√
4− x2

2(x+ 2)
.

Plugging a = x, b = c = 1 and the above relations into (8), after some calculations we
obtain

λ ≤ 12x3 − 22x2 + 20x− 2(x+ 2)
√

(4− x2)(1 + 2x2) + 8

x(x − 1)2
. (9)

Let

f(x) = 12x3 − 22x2 + 20x− 2(x+ 2)
√

(4− x2)(1 + 2x2) + 8, g(x) = x(x − 1)2.

Then it follows that

f ′(x) =
12x4 + 16x3 − 28x2 − 28x− 8 + 4(9x2 − 11x+ 5)

√

(4− x2)(1 + 2x2)
√

(4− x2)(1 + 2x2)
,

g′(x) = 3x2 − 4x+ 1.

Note that

lim
x→0

f(x) = 0, lim
x→0

g(x) = 0.
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According to inequality (9) and the L’Hôpital’s Rule, we get

λ ≤ lim
x→0

f(x)

g(x)
= lim

x→0

f ′(x)

g′(x)

= lim
x→0

12x4 + 16x3 − 28x2 − 28x− 8 + 4(9x2 − 11x+ 5)
√

(4− x2)(1 + 2x2)

(3x2 − 4x+ 1)
√

(4− x2)(1 + 2x2)

= 16.

Thus we complete the proof of Theorem 2. �

Remark 1. In [3], Chu Xiao-Guang and Yang Xue-Zhi also obtained inverse inequality
of (2):

(ma +mb +mc)
2 ≥ 4s2 − 28Rr + 29r2. (10)

In the same way as in the proof of Theorem 2, we can also prove the following conclusion:
Let λ be positive real numbers such that

(ma +mb +mc)
2 ≥ 4s2 − λRr + (2λ− 27)r2. (11)

holds for all triangles ABC, then λmin = 28.

3. The Proof of Theorem 3

In order to prove Theorem 3, we need some lemmas.

Lemma 1. [3] In all triangle ABC the following inequality holds:

4mbmc ≤ 2a2 + bc− 4s(s− a)(b − c)2

2a2 + bc
, (12)

with equality if and only if b = c.

Lemma 2. In all triangle ABC the following inequalities hold:

16Rr − 5r2 ≤ s2 ≤ R(4R+ r)2

2(2R− r)
, (13)

with equality if and only if △ABC is equilateral.

The first inequality

s2 ≥ 16Rr− 5r2 (14)

is the well-known Gerretsen inequality (see [2],[4]). The second inequality

s2 ≤ R(4R+ r)2

2(2R− r)
(15)

is Kooi inequality (see [2]), which is stronger than another Gerretsen inequality:

s2 ≤ 4R2 + 4Rr + 3r2. (16)

In addition, Kooi inequality is equivalent to Garfunkel-Bankoff inequality (see [7]-[9]):

tan2
A

2
+ tan2

B

2
+ tan2

C

2
≥ 2− 8 sin

A

2
sin

B

2
sin

C

2
. (17)

where A,B,C are the angles of triangle ABC. In [10], the author gave a generalization
of the equivalent form of the above inequality.
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Lemma 3. In all triangle ABC the following inequality holds:

8Rr(115R2 + 47r2)s4 + (64R6 − 8448rR5 + 6484R4r2 − 35204R3r3

+9260R2r4 − 1912Rr5 + 80r6)s2 + 4r(292R5 − 485R4r + 1727R3r2

+137R2r3 + 16Rr4 + 4r5)(4R+ r)2 ≥ 0, (18)

with equality if and only if triangle ABC if equilateral.

Proof. We denote the right hand side of (18) by Q1(s
2) in which s2 is being seen as a

variable and put

T = 16Rr(115R2 + 47r2)s2 + 64R6 − 8448rR5 + 6484R4r2 − 35204R3r3

+9260R2r4 − 1912Rr5 + 80r6.

We will prove inequality Q1(s
2) ≥ 0 divides into two cases.

Case 1. T ≥ 0.
According to the property of parabolas and Gerretsen’s inequality chain 16Rr− 5r2 ≤

s2 ≤ 4R2 + 4Rr + 3r2, Q1(s
2) is monotone increasing on interval [16Rr − 5r2, 4R2 +

4Rr + 3r2] in this case. Therefore, in order to prove Q1(s
2) ≥ 0 we need to prove that

Q1(16Rr − 5r2) ≥ 0, namely

8Rr(115R2 + 47r2)(16Rr − 5r2)2 + (64R6 − 8448rR5 + 6484R4r2 − 35204R3r3

+9260R2r4 − 1912Rr5 + 80r6)(16Rr − 5r2) + 4r(292R5 − 485R4r + 1727R3r2

+137R2r3r + 16Rr4 + 4r5)(4R+ r)2 ≥ 0,

after simplifying, that is

8r(R−2r)(2464R6−14720R5r+30270R4r2−24559R3r3+7851R2r4−1265Rr5+24r6) ≥ 0,

By Euler’s inequality (5), it suffices to prove that

2464R6 − 14720R5r + 30270R4r2 − 24559R3r3 + 7851R2r4 − 1265Rr5 + 24r6 > 0, (19)

which is equivalent to

2464d6 + 14848d5r + 30910d4r2 + 23041d3r3 + (737d2 − 441dr + 3402r2)r4 > 0,

where d = R−2r ≥ 0. It is easy to show that 737d2−441dr+3402r2 > 0, hence inequality
(19) is proved. The proof of inequality (18) in the first case is complete.

Case 2. T < 0.
We can get the following identity:

2Q1(s
2) = −t2T +M1t1 + 16drM2 + 256d8, (20)

where

d = R− 2r

t1 = s2 − 16Rr + 5r2,

t2 = 4R2 + 4Rr + 3r2 − s2,

M1 = 64d6 − 320d5r + 6804d4r2 + 50796d3r3 + 112788d2r4 + 97560dr5 + 27216r6,

M2 = 560d6 + 1749d5r − 1442d4r2 − 8991d3r3 − 1956d2r4 + 14529dr5 + 10206r6.

From Euler inequality (5), Gerretsen inequalities (14), (16) and the hypothesis T < 0 we
have d ≥ 0, t1 ≥ 0,−t2T ≥ 0, thus to prove Q1(s

2) ≥ 0 we need prove M1 > 0,M2 > 0.
Since 64d6 − 320d5r + 6804d4r2 = 4d4(16d2 − 80dr + 1701r2) > 0, hence M1 > 0. By
applying the monotonicity of the function, we easily prove that

560x6 + 1749x5 − 1442x4 − 8991x3 − 1956x2 + 14529x+ 10206 > 0. (21)
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Then inequality M1 > 0 follows immediately. Thus, we complete the proof of Q1(s
2) ≥ 0

in the second case.
Combing the arguments of the two cases, inequality (18) holds for all triangle ABC.

The equality in (18) occurs if and only if R = 2r, namely △ABC is equilateral. The
proof of Lemma 3 is complete. �

Lemma 4. In all triangle ABC the following inequality holds:

s4 − (4R2 + 20Rr − 2r2)s2 + r(4R+ r)3 ≤ 0, (22)

with equality if and only if ABC is isosceles.

Inequality (22) is the fundamental triangle inequality, which has various equivalent
forms, see [2], [4], [5], [6], [9].

Lemma 5. In all triangle ABC holds

(−R2 + 56Rr− 4r2)s6 + (8R4 − 480R3r − 891R2r2 + 80Rr3 − 12r4)s4

+(4R+ r)(244R4 + 1420R3r + 533R2r2 + 56Rr3 − 12r4)s2r

−(33R2 + 16Rr+ 4r2)(4R+ r)4r2 ≥ 0, (23)

with equality if and only if triangle ABC is equilateral.

Proof. Denote the right hand side of (26) by Q2, we can rewrite it as follows:

Q2 = (s2 − 16Rr + 5r2)[(−R2 + 56Rr− 4r2)s4 + (8R4 − 496R3r + 10R2r2

−264Rr3 + 8r4)s2 + r(1104R5 − 2052R4r + 6192R3r2 − 3517R2r3

+1456Rr4 − 52r5)] + 4r2[2304(R− 2r)4 + 14924(R− 2r)3r

+36261(R− 2r)2r2 + 39188(R− 2r)r3 + 15876r4](R − 2r)2. (24)

So, if the following holds

(−R2 + 56Rr − 4r2)s4 + (8R4 − 496R3r + 10R2r2 − 264Rr3 + 8r4)s2

+r(1104R5 − 2052R4r + 6192R3r2 − 3517R2r3 + 1456Rr4 − 52r5) ≥ 0, (25)

then Q2 ≥ 0 follows from the first inequality of Lemma (2) and Euler’s inequality (5). If
inequality (25) is reverse, by Kooi inequality (15), it is sufficient to prove that

[

R(4R+ r)2

2(2R− r)
− 16Rr + 5r2

]

[

(−R2 + 56Rr − 4r2)s4 + (8R4 − 496R3r

+10R2r2 − 264Rr3 + 8r4)s2 + r(1104R5 − 2052R4r + 6192R3r2 − 3517R2r3

+1456Rr4 − 52r5)
]

+ 4r2
[

2304(R− 2r)4 + 14924(R− 2r)3r + 36261(R− 2r)2r2

+39188(R− 2r)r3 + 15876r4
]

(R − 2r)2 ≥ 0. (26)

This can be changed into
R− 2r

2(2R− r)
M3 ≥ 0, (27)

where

M3 = −(4R− 5r)(4R − r)(R2 − 56Rr + 4r2)s4 + 2(4R− 5r)(4R − r)(4R4 − 248R3r

+5R2r2 − 132Rr3 + 4r4)s2 + r(1104R5 − 1956R4r + 1256R3r2

−856R2r3 − 16Rr4 − 4r5)(4R+ r)2.

After analyzing, we obtain the following identity:

M3 = (16R4 + 1413R2r2 + 20r4)
[

−s4 + (4R2 + 20Rr − 2r2)s2 − r(4R+ r)3
]

+2R(4R− r)(4R − 5r)r5 +Q1(s
2), (28)
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where Q1(s
2) denotes the value of the right hand side of (18) which is non-negative.

Therefore, M3 ≥ 0 follows from the fundamental inequality (22), hence inequality (27) is
proved.

Combing the above arguments, we deduce that Q2 ≥ 0 holds for every triangle. The
equality in Q2 ≥ 0 is valid when triangle ABC is equilateral. The proof of Lemma 5
comes to the end. �

We are now in a position to prove Theorem 3. Next, let
∑

,
∏

denote the cyclic sums
and the cyclic products respectively.

Proof. As we have said, inequality (4) is equivalent to (6). So we have to prove that

4
∑

mbmc ≤
(

5

2
+

2r2

R2

)

∑

a2. (29)

By Lemma 1, it suffices to prove that

∑

(2a2 + bc)− 4s
∑ (s− a)(b− c)2

2a2 + bc
≤

(

5

2
+

2r2

R2

)

∑

a2,

i.e.

∑

a
∑

(b+ c− a)(2b2 + ca)(2c2 + ab)(b− c)2

+

(

R2 + 4r2

2R2

∑

a2 −
∑

bc

)

∏

(2a2 + bc) ≥ 0.

Putting

M4 = 2R2
∑

a
∑

(b + c− a)(2b2 + ca)(2c2 + ab)(b− c)2

+
[

(R2 + 4r2)
∑

a2 − 2R2
∑

bc
]

∏

(2a2 + bc). (30)

then we need to prove M4 ≥ 0. To do so, we first make some computations.
It is easy to check the identities:

∏

(2a2 + bc) = 9(abc)2 + 2abc
∑

a3 + 4
∑

b3c3, (31)

and

∑

(b+ c− a)(2b2 + ca)(2c2 + ab)(b− c)2

= 2
∑

bc
∑

a5 − 6abc
∑

a4 + 2
∑

b2c2
∑

a3 − abc
∑

bc
∑

a2

−5(abc)2
∑

a− 4
∑

a
∑

b3c3 + 14abc
∑

b2c2. (32)

Then using
∑

a = 2s and the following well-known identities:



ON A SHARP INEQUALITY FOR THE MEDIANS OF A TRIANGLE 147

abc = 4Rrs (33)
∑

bc = s2 + 4Rr + r2, (34)
∑

a2 = 2s2 − 8Rr − 2r2, (35)
∑

a3 = 2s3 − (12Rr + 6r2)s, (36)
∑

a4 = 2s4 − (16Rr + 12r2)s2 + 2r2(4R+ r)2, (37)
∑

a5 = 2s5 − (20Rr + 20r2)s3 + (80R2r2 + 60Rr3 + 10r4)s, (38)
∑

b2c2 = s4 + (−8Rr + 2r2)s2 + (4R+ r)2r2, (39)
∑

b3c3 = s6 + (−12Rr + 3r2)s4 + 3r4s2 + r3(4R+ r)3, (40)

We further obtain
∏

(2a2 + bc) = 4s6 − (32Rr − 12r2)s4 + 12(2R− r)2r2s2 + 4(4R+ r)3r3, (41)

and
∑

(b + c− a)(2b2 + ca)(2c2 + ab)(b− c)2

= 16rs3
[

(R − 4r)s2 + r(2R2 + 25Rr − 4r2)
]

. (42)

Plugging
∑

a = 2s,(34),(35),(41), and (42) into the expression of M4, we can get

M4 = 16r2M5, (43)

where

M5 = 2s8 − (17R2 + 24Rr − 4r2)s6 +R(40R3 + 96R2r + 69Rr2 − 32r3)s4

−(R− 2r)(4R+ r)(12R3 + 12R2r + 19Rr2 − 2r3)s2r − (R2 + 2r2)(4R+ r)4r2.

Therefore, in order to prove M4 ≥ 0 we need to prove that M5 ≥ 0. After studying, we
get the following identity:

M5 ≡ Q2 + 2
[

s4 − (4R2 + 20Rr − 2r2)s2 + r(4R + r)3
]2

, (44)

where Q2 is equal to the value of the left hand side of inequality (23). Hence M5 ≥ 0,
inequality M4 ≥ 0 and inequality (29) are proved. It is easy to see that the equality
in (29) if and only if triangle ABC is equilateral. This completes the proof of Theorem
3. �

4. A Conjecture

The author has proved the following refinement of inequality (1):

ma +mb +mc < 2(b2c2 + c2a2 + a2b2)
1

4 < 2s. (45)

This result prompts us to propose a conjecture similar to Theorem 3, which is checked
by the computer:

Conjecture 1. In all triangle ABC, the following inequality holds:

(ma +mb +mc)
4

b2c2 + c2a2 + a2b2
≤ 16− 13r2

4R2
. (46)

Remark 2. We know that inequality (46) can not be derived from inequality (2) or
inequality (4).
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