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ON SOME MULTIPLIER DIFFERENCE SEQUENCE SPACES

DEFINED OVER A 2-NORMED LINEAR SPACE

B.SURENDER REDDY AND HEMEN DUTTA

Abstract. In this paper, we introduce a new class of generalized difference sequences
with base space, a real linear 2-normed space and by means of a fixed multiplier. We
study the spaces of thus constructed classes of sequences for relevant linear topological
structures. Further we investigate the spaces for solidity, monotonicity, symmetricity
etc. We also obtain some relations between these spaces as well as prove some inclusion

results.

1. Introduction

Let w, ℓ∞, c and c0 denote the spaces of all, bounded, convergent and null (set of
convergent scalar sequences with limit zero) sequences x = (xk) with complex terms
respectively. The zero sequence is denoted by θ = (0, 0, . . . ).

The notion of difference sequence space was introduced by Kizmaz [12], who studied
the difference sequence spaces ℓ∞(∆), c(∆) and c0(∆). The notion was further generalized
by Et and Colak [5] by introducing the spaces ℓ∞(∆n), c(∆n) and c0(∆

n). Another type
of generalization of the difference sequence spaces is due to Tripathy and Esi [18], who
studied the spaces ℓ∞(∆m), c(∆m) and c0(∆m).

Tripathy, Esi and Tripathy [19] generalized the above notions and unified these as
follows:

Let m, n be non-negative integers, then for Z a given sequence space we have

Z(∆n
m) = {x = (xk) ∈ w : (∆n

mxk) ∈ Z} ,

where ∆n
mx = (∆n

mxk) = (∆n−1
m xk −∆n−1

m xk+m) and ∆0
mxk = xk for all k ∈ N , which is

equivalent to the following binomial representation:

∆n
mxk =

n
∑

v=0

(−1)v
(

n

v

)

xk+mv

Taking m = 1, we get the spaces ℓ∞(∆n), c(∆n) and c0(∆
n) studied by Et and Colak [5].

Taking n = 1, we get the spaces ℓ∞(∆m), c(∆m) and c0(∆m) studied by Tripathy and
Esi [18]. Taking m = n = 1, we get the spaces ℓ∞(∆), c(∆) and c0(∆) introduced and
studied by Kizmaz [12].

Let Λ = (λk) be a sequence of non-zero scalars. Then for E a sequence space, the
multiplier sequence space E(Λ), associated with the multiplier sequence Λ is defined as

E(Λ) = {(xk) ∈ w : (λkxk) ∈ E}

The scope for the studies on sequence spaces was extended by using the notion of asso-
ciated multiplier sequences. Goes and Goes [9] defined the differentiated sequence space
dE and integrated sequence space

∫

E for a given sequence space E, using the multiplier
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sequences (k−1) and (k) respectively. A multiplier sequence can be used to accelerate
the convergence of the sequences in some spaces. In some sense, it can be viewed as
a catalyst, which is used to accelerate the process of chemical reaction. Sometimes the
associated multiplier sequence delays the rate of convergence of a sequence.

The concept of 2-normed spaces was initially developed by Gähler [7] in the mid of
1960’s. Since then, Gunawan and Mashadi [11] and many others have studied this concept
and obtained various results.

Let X be a real linear space of dimension greater than one and let ‖•, •‖ be a real
valued function on X ×X satisfying the following conditions
2N1 : ‖x, y‖ = 0 if and only if x and y are linearly dependent vectors,
2N2 : ‖x, y‖ = ‖y, x‖,
2N3 : ‖αx, y‖ ≤ |α| ‖x, y‖, for every α ∈ R
2N4 : ‖x, y + z‖ ≤ ‖x, y‖+ ‖x, z‖
then the function ‖•, •‖ is called a 2-norm on X and the pair (X, ‖•, •‖) is called a
2-normed linear space.

The following inequality will be used throughout the article.
Let p = (pk) be a positive sequence of real numbers with 0 < pk ≤ sup pk = G,

D = max(1, 2G−1). Then for all ak, bk ∈ C for all k ∈ N , we have

|ak + bk|
pk ≤ D {|ak|

pk + |bk|
pk}

and for λ ∈ C, |λ|pk ≤ max(1, |λ|G).
The studies on paranormed sequence spaces were initiated by Nakano [16] and Simons

[17] at the initial stage. Later on it was further studied by Maddox [15], Lascardies [13],
Lascardies and Maddox [14], Ghosh and Srivastava [10] and many others.

2. Definitions and preliminaries

A sequence space E is said to be solid (or normal) if (xk) ∈ E implies (αkxk) ∈ E for
all sequences of scalars (αk) with |αk| ≤ 1 for all k ∈ N .

A sequence space E is said to be monotone if it contains the canonical preimages of
all its step spaces.

A sequence space E is said to be symmetric if (xπ(k)) ∈ E whenever (xk) ∈ E, where
π is a permutation on N .

A sequence space E is said to be convergence free if (yk) ∈ E whenever (xk) ∈ E and
yk = 0 whenever xk = 0.

A sequence space E is said to be sequence algebra if (xk, yk) ∈ E whenever (xk) ∈ E
and (yk) ∈ E.

A sequence (xk) in a 2-normed space (X, ‖•, •‖) is said to converge to some L ∈ X in
the 2-norm if lim

k→∞
‖xk − L, u‖ = 0, for every u ∈ X .

A sequence (xk) in a 2-normed space (X, ‖•, •‖) is said to be Cauchy sequence with
respect to the 2-norm if lim

k,l→∞
‖xk − xl, u‖ = 0, for every u ∈ X .

If every Cauchy sequence in X converges to some L ∈ X , then X is said to be complete
with respect to the 2-norm. Any complete 2-normed space is said to be 2-Banach space.

Let us now consider the following known example of 2-norms.

Example 1. Let C0 be the linear space of all sequences of real numbers with only finite
number of non-zero terms. For x = (xk), y = (yk) in C0, let us define:
‖x, y‖ = 0, if x, y are linearly dependent,

=
∞
∑

k=1

|xk| |yk|, if x, y are linearly independent.

Then it is obvious that ‖•, •‖ is a 2-norm on C0.
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Example 2. Let us take X = R2 and consider the function ‖•, •‖ on X defined as:

‖x1, x2‖E = abs

(∣

∣

∣

∣

x11 x12

x21 x22

∣

∣

∣

∣

)

,

where xi = (xi1, xi2) ∈ R2 for each i = 1, 2.
Then ‖•, •‖E is a 2-norm on X and known as Euclidean 2-norm.

Let p = (pk) be any bounded sequence of positive real numbers and Λ = (λk) be
a sequence of non-zero reals. Let m, n be non-negative integers, then for a real linear
2-normed space (X, ‖•, •‖) we define the following sequence spaces:
c0(‖•, •‖,∆

n
(m),Λ, p) =

{

x = (xk) ∈ w(X) : lim
k→∞

(

‖∆n
(m)λkxk, z‖

)pk

= 0, for every z in X

}

,

c(‖•, •‖,∆n
(m),Λ, p) =

{

x = (xk) ∈ w(X) : lim
k→∞

(

‖∆n
(m)λkxk − L, z‖

)pk

= 0, for every z and for some L ∈ X

}

ℓ∞(‖•, •‖,∆n
(m),Λ, p) =

{

x = (xk) ∈ w(X) : sup
k≥1

(

‖∆n
(m)λkxk, z‖

)pk

< ∞, for every z in X

}

,

where (∆n
(m)λkxk) = (∆n−1

(m) λkxk−∆n−1
(m) λk−mxk−m) and ∆0

(m)λkxk = λkxk for all k ∈ N

and which is equivalent to the binomial representation

∆n
(m)λkxk =

n
∑

v=0

(−1)v
(

n

v

)

λk−mvxk−mv.

In the above expansion we take xk = 0 and λk = 0, for non-positive values of k.
It is obvious that

c0(‖•, •‖,∆
n
(m),Λ, p) ⊂ c(‖•, •‖,∆n

(m),Λ, p) ⊂ ℓ∞(‖•, •‖,∆n
(m),Λ, p)

The inclusions are strict follows from the following examples.

Example 3. Let m = 2, n = 2 and pk = 1 for all k ≥ 1. Consider the 2-normed space
of Example 1 and let the sequences Λ = (k8) and x = ( 1

k6 ). Then x ∈ c(‖•, •‖,∆2
(2),Λ, p),

but x /∈ c0(‖•, •‖,∆
2
(2),Λ, p).

Example 4. Let m = 2, n = 2 and pk = 2 for all k odd and pk = 3 for all k
even. Consider the 2-normed space of Example 1 and let the sequences Λ = (1, 1, 1, . . . )
and x = {1, 3, 2, 4, 5, 7, 6, 8, 9, 11, 10, 12, . . .}. Then x ∈ ℓ∞(‖•, •‖,∆2

(2),Λ, p), but x /∈

c(‖•, •‖,∆2
(2),Λ, p).

Lemma 1. If a sequence space E is solid, then E is monotone.

3. Main results

In this section we prove the main results of this article.

Proposition 1. The classes of sequences c0(‖•, •‖,∆
n
(m),Λ, p), c(‖•, •‖,∆n

(m),Λ, p) and

ℓ∞(‖•, •‖,∆n
(m),Λ, p) are linear.

Proof. Proof is easy and so omitted. �
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Theorem 1. For Z = ℓ∞, c and c0, the spaces Z(‖•, •‖,∆n
(m),Λ, p) are paranormed

sapces, paranormed by

g(x) = sup
k≥1, z∈X

(

‖∆n
(m)λkxk, z‖)

)

pk
H

, where H = max(1, sup
k≥1

pk).

Proof. Clearly g(x) = g(−x); x = θ implies g(θ) = 0. Let (xk) and (yk) be any two
elements belongs to any of the space c0(‖•, •‖,∆

n
(m),Λ, p). Then we have,

g(x+ y) = e sup
k≥1, z∈X

(

‖∆n
(m)λkxk +∆n

(m)λkyk, z‖)
)

pk
H

≤ sup
k≥1, z∈X

(

‖∆n
(m)λkxk, z‖)

)

pk
H

+ sup
k≥1, z∈X

(

‖∆n
(m)λkyk, z‖)

)

pk
H

=⇒ g(x+ y) ≤ g(x) + g(y).
The continuity of the scalar multiplication follows from the following equality:

g(αx) = sup
k≥1, z∈X

(

‖∆n
(m)αλkxk, z‖

)

pk
H

= sup
k≥1, z∈X

(

|α| ‖∆n
(m)λkxk, z‖

)

pk
H

≤ max( 1 + [ |α| ] )g(x),

where [ |α| ] denotes the largest integer contained in |α|. Hence the spaces
c0(‖•, •‖,∆

n
(m),Λ, p) is a paranormed space, paranormed by g. The rest of the cases will

follow similarly. �

Theorem 2. If (X, ‖•, •‖) is a 2-Banach space, then the spaces Z(‖•, •‖,∆n
(m),Λ, p), for

Z = ℓ∞, c and c0 are complete paranormed spaces, paranormed by

g(x) = sup
k≥1, z∈X

(

‖∆n
(m)λkxk, z‖)

)

pk
H

, where H = max(1, sup
k≥1

pk).

Proof. We prove the result for the space ℓ∞(‖•, •‖,∆n
(m),Λ, p) and for other spaces it will

follow on applying similar arguments.
Let (xi) be any Cauchy sequence in ℓ∞(‖•, •‖,∆n

(m),Λ, p). Let ε > 0 be given, then

there exists a positive integer n0 such that g(xi − xj) < ε, for all i, j ≥ n0. Using the
definition of paranorm, we get

sup
k≥1, z∈X

(

‖∆n
(m)λkx

i
k −∆n

(m)λkx
j
k, z‖)

)

pk
H

< ε for all i, j ≥ n0

It follows that for every z ∈ X and k ≥ 1,

‖∆n
(m)λkx

i
k −∆n

(m)λkx
j
k, z‖ < ε, for all i, j ≥ n0.

Hence (∆n
(m)λkx

i
k) is a Cauchy sequence in X for all k ∈ N .

⇒ (∆n
(m)λkx

i
k) is convergent in X for all k ∈ N , since X is a 2-Banach space. For

simplicity, let lim
i→∞

∆n
(m)λkx

i
k = yk for each k ∈ N . Let k = 1, we have

lim
i→∞

∆n
(m)λ1x

i
1 = lim

i→∞

n
∑

v=0

(−1)v
(

n

v

)

λ1−mvx
i
1−mv (1)

Similarly we have
lim
i→∞

λkx
i
k = yk, for k = 1, 2, . . . , nm (2)
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Thus from (1) and (2) we have lim
i→∞

xi
1+nm exists. Let lim

i→∞
xi
1+nm = x1+nm. Proceding

in this way inductively, we have lim
i→∞

xi
k = xk exists for each k ∈ N . Now we have for all

i, j ≥ n0.

sup
k≥1, z∈X

(

‖∆n
(m)λkx

i
k −∆n

(m)λkx
j
k, z‖)

)

pk
H

< ε

=⇒ lim
j→∞

[

sup
k≥1, z∈X

(

‖∆n
(m)λkx

i
k −∆n

(m)λkx
j
k, z‖)

)

pk
H

]

< ε for all i ≥ n0

=⇒ sup
k≥1, z∈X

(

‖∆n
(m)λkx

i
k −∆n

(m)λkxk, z‖)
)

pk
H

< ε for all i ≥ n0

It follows that (xi − x) ∈ ℓ∞(‖•, •‖,∆n
(m),Λ, p).

Since (xi) ∈ ℓ∞(‖•, •‖,∆n
(m),Λ, p) and ℓ∞(‖•, •‖,∆n

(m),Λ, p) is a linear space, so we

have x = xi − (xi − x) ∈ ℓ∞(‖•, •‖,∆n
(m),Λ, p). This completes the proof of the theorem.

�

Theorem 3. If 0 < pk ≤ qk < ∞ for each k, then

Z(‖•, •‖,∆n
(m),Λ, p) ⊆ Z(‖•, •‖,∆n

(m),Λ, q)

for Z = c0 and c.

Proof. We prove the result for the case Z = c0 and for the other case it will follow on
applying similar arguments.
Let (xk) ∈ c0(‖•, •‖,∆

n
(m),Λ, p). Then we have

lim
k→∞

(

‖∆n
(m)λkxk, z‖

)pk

= 0

This implies that
(

‖∆n
(m)λkxk, z‖

)pk

< ε, (0 < ε ≤ 1) for sufficiently large k. Hence we

get

lim
k→∞

(

‖∆n
(m)λkxk, z‖

)qk

≤ lim
k→∞

(

‖∆n
(m)λkxk, z‖

)pk

= 0

=⇒ (xk) ∈ c0(‖•, •‖,∆
n
(m),Λ, q). Thus

c0(‖•, •‖,∆
n
(m),Λ, p) ⊆ c0(‖•, •‖,∆

n
(m),Λ, q)

Similarly, c(‖•, •‖,∆n
(m),Λ, p) ⊆ c(‖•, •‖,∆n

(m),Λ, q). This completes the proof. �

The following result is a consequence of Theorem 3.

Corollary 1. (a) If 0 < inf pk ≤ pk ≤ 1, for each k, then

Z(‖•, •‖,∆n
(m),Λ, p) ⊆ Z(‖•, •‖,∆n

(m),Λ), for Z = c0 and c.

(b) If 1 ≤ pk ≤ sup pk < ∞, for each k, then

Z(‖•, •‖,∆n
(m),Λ) ⊆ Z(‖•, •‖,∆n

(m),Λ, p), for Z = c0 and c.

Theorem 4. Z(‖•, •‖,∆n−1
(m) ,Λ, p) ⊂ Z(‖•, •‖,∆n

(m),Λ, p)

(in general Z(‖•, •‖,∆i
(m),Λ, p) ⊂ Z(‖•, •‖,∆n

(m),Λ, p), for i = 1, 2, . . . , n − 1), for Z =

ℓ∞, c and c0.
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Proof. Here we prove the result for Z = c0 and for the other cases it will follow on
applying similar arguments.

Let x = (xk) ∈ c0(‖•, •‖,∆
n−1
(m) ,Λ, p). Then we have

lim
k→∞

(

‖∆n−1
(m) λkxk, z‖

)pk

= 0 (3)

Now we have

‖∆n
(m)λkxk, z‖ ≤ ‖∆n−1

(m) λkxk, z‖+ ‖∆n−1
(m) λk−mxk−m, z‖

Hence we have
(

‖∆n
(m)λkxk, z‖

)pk

≤ D
{(

‖∆n−1
(m) λkxk, z‖

)pk

+
(

‖∆n−1
(m) λk−mxk−m, z‖

)pk
}

Then using (3), we get

lim
k→∞

(

‖∆n
(m)λkxk, z‖

)pk

= 0

Thus c0(‖•, •‖,∆
n−1
(m) ,Λ, p) ⊂ c0(‖•, •‖,∆

n
(m),Λ, p) �

The inclusion is strict follows from the following example.

Example 5. Let m = 3, n = 2 and pk = 5 for all k odd and pk = 3 for all k even.
Consider the 2-normed space of Example 2. Consider the sequences Λ =

(

1
k3

)

and x =

(xk) = (k4, k4). Then ∆2
(3)λkxk = 0, for all k ∈ N . Then x ∈ c0(‖•, •‖,∆

2
(3),Λ, p).

Again we have ∆1
(3)λkxk = −3, for all k ∈ N . Hence x /∈ c0(‖•, •‖,∆

1
(3),Λ, p). Thus the

inclusion is strict.

Theorem 5. The spaces c0(‖•, •‖,∆
n
(m),Λ, p), c(‖•, •‖,∆

n
(m),Λ, p) and ℓ∞(‖•, •‖,∆n

(m),

Λ, p) are not monotone and as such are not solid in general

Proof. The proof follows from the following example. �

Example 6. Let n = 2, m = 3, pk = 1 for all k odd and pk = 2 for all k even and consider
the 2-normed space of Example 1. Then ∆2

(3)λkxk = λkxk−2λk−3xk−3+λk−6xk−6, for all

k ∈ N . Consider the J th step space of a sequence space E defined as, for (xk), (yk) ∈ EJ

implies that yk = xk for k odd and yk = 0 for k even. Consider the sequences Λ = (k3)
and x = ( 1

k2 ). Then x ∈ Z(‖•, •‖,∆2
(3),Λ, p) for Z = ℓ∞, c and co, but its J th canonical

pre-image does not belong to Z(‖•, •‖,∆2
(3),Λ, p) for Z = ℓ∞, c and co. Hence the spaces

Z(‖•, •‖,∆n
(m),Λ, p) for Z = ℓ∞, c and co are not monotone and as such are not solid in

general.

Theorem 6. The spaces c0(‖•, •‖,∆
n
(m),Λ, p), c(‖•, •‖,∆

n
(m),Λ, p) and ℓ∞(‖•, •‖,∆n

(m),

Λ, p) are not symmetric in general

Proof. The proof follows from the following example. �

Example 7. Let n = 2, m = 2, pk = 2 for all k odd and pk = 3 for all k even and consider
the 2-normed space of Example 1. Then ∆2

(2)λkxk = λkxk − 2λk−2xk−2 + λk−4xk−4, for

all k ∈ N . Consider the sequences Λ = (1, 1, 1, . . . ) and x = (xk) defined as xk = k
for k odd and xk = 0 for k even. Then ∆2

(2)λkxk = 0, for all k ∈ N . Hence (xk) ∈

Z(‖•, •‖,∆2
(2),Λ, p), for Z = ℓ∞, c and co. Consider the rearranged sequence, (yk) of

(xk) defined as

(yk) = (x1, x3, x2, x4, x5, x7, x6, x8, x9, x11, x10, x12, . . . )
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Then (yk) /∈ Z(‖•, •‖,∆2
(2),Λ, p), for Z = ℓ∞, c and co.

Hence the spaces Z(‖•, •‖,∆n
(m),Λ, p), for Z = ℓ∞, c and co are not symmetric in general.

Theorem 7. The spaces c0(‖•, •‖,∆
n
(m),Λ, p), c(‖•, •‖,∆

n
(m),Λ, p) and ℓ∞(‖•, •‖,∆n

(m),

Λ, p) are not convergence free in general

Proof. The proof follows from the following example. �

Example 8. Let m = 3, n = 1, pk = 6 for all k and consider the 2-normed space of
Example 2. Then ∆1

(3)λkxk = λkxk−λk−3xk−3, for all k ∈ N . Let Λ =
(

7
k

)

and consider

the sequences (xk) and (yk) defined as xk =
(

4
7k,

4
7k

)

for all k ∈ N and yk =
(

1
7k

3, 17k
3
)

for all k ∈ N . Then (xk) ∈ Z(‖•, •‖,∆1
(3),Λ, p) but (yk) /∈ Z(‖•, •‖,∆1

(3),Λ, p), for

Z = ℓ∞, c and co. Hence the spaces Z(‖•, •‖,∆n
(m),Λ, p), for Z = ℓ∞, c and co are not

convergence free in general.

Theorem 8. The spaces c0(‖•, •‖,∆
n
(m),Λ, p), c(‖•, •‖,∆

n
(m),Λ, p) and ℓ∞(‖•, •‖,∆n

(m),

Λ, p) are not sequence algebra in general

Proof. The proof follows from the following example. �

Example 9. Let n = 2, m = 1, pk = 1 for all k and consider the 2-normed space of
Example 1. Then ∆2

(1)λkxk = λkxk − 2λk−1xk−1 + λk−2xk−2, for all k ∈ N . Consider

Λ =
(

1
k4

)

and let x = (k5) and y = (k6). Then x, y ∈ Z(‖•, •‖,∆2
(1),Λ, p), Z = ℓ∞

and c, but x, y /∈ Z(‖•, •‖,∆2
(1),Λ, p), for Z = co Hence the spaces c(‖•, •‖,∆n

(m),Λ, p),

ℓ∞(‖•, •‖,∆n
(m),Λ, p) are not sequence algebra in general.

Example 10. Let n = 2, m = 1, pk = 3 for all k and consider the 2-normed space of
Example 2. Then ∆2

(1)λkxk = λkxk − 2λk−1xk−1 + λk−2xk−2, for all k ∈ N . Consider

Λ =
(

1
k7

)

and let x = (k8, k8) and y = (k8, k8). Then x, y ∈ c0(‖•, •‖,∆
2
(1),Λ, p), but

x, y /∈ Z(‖•, •‖,∆2
(1),Λ, p), for Z = ℓ∞, c. Hence the space c0(‖•, •‖,∆

2
(1),Λ, p) is not

sequence algebra in general.
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