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A Nonlinear Fredholm Integral Equation

MARIA DOBRIT, OIU

ABSTRACT. This paper contains several results of existence, existence and uniqueness and con-
tinuous data dependence of the solution of a nonlinear Fredholm integral equation with modified
argument, which appears in the 70’, in some problems from turbo-reactors industry. To obtain these
results the Contraction Principle, the Schauder’s theorem and the General data dependence theorem
are useful.
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1. INTRODUCTION

The integral equations, in general, and those with modified argument, in par-
ticular, form an important part of applied mathematics, with links with many
theoretical fields, specially with practical fields.

In the study of some problems from turbo-reactors industry, in the 70’, a Fred-
holm integral equation with modified argument appears, having the following
form

x(t) =

∫ b

a

K(t, s, x(s), x(a), x(b))ds+ f(t), t ∈ [a, b], (1’)

where K : [a, b] × [a, b] × R3 → R, f : [a, b] → R . This integral equation is a
mathematical model reference with to the turbo-reactors working.

We study the solution x∗ ∈ C [a, b] of this integral equation and we have ob-
tained the conditions of existence, of existence and uniqueness, of data depen-
dence, of differentiability of the solution with respect to a parameter and of ap-
proximation of the solution. These results have been published in the papers [1],
[4], [5], [6], [7] and [8].

In the study of the solution of some nonlinear integral equations, in general,
and those of type (1), in particular, the papers: V. Berinde [2], D. Guo, V. Laksh-
mikantham and X. Liu [9], W. Hackbusch [10], V. Mureşan [12], R. Precup [14]
and [15], I.A. Rus [16] and [19] and M.A. Şerban [20] have been useful.

In this paper we will extend the results obtained and mentioned above, for the
integral equation (1’)

x(t) =

∫ b

a

K(t, s, x(s), x(a), x(b))ds+ f(t), t ∈ [a, b], (1)

when K : [a, b] × [a, b] × B3 → B, f : [a, b] → B, where (B, +, R, |·|) is a Banach
space.
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Our purpose is to study the solution x∗ ∈ C([a, b] ,B) of this integral equation,
in order to establish some results regarding:
- the existence of the solution using the Arzela-Ascoli’s theorem and the

Schauder’s theorem,
- the existence and uniqueness of the solution using the Contraction Principle,

and
- the data dependence of the solution using the General data dependence theo-

rem.

2. NOTATIONS AND PRELIMINARIES

Let X be a nonempty set and A : X → X an operator. In this paper we shall
use the following notations:

P (X) := {Y ⊂ X / Y ̸= ∅} - the set of all nonempty subsets of X
A0 := 1X , A1 := A, An+1 := A ◦An, n ∈ N - the iterate operators of A
I(A) := {Y ∈ P (X) / A(Y ) ⊂ Y } - the family of nonempty subsets of X ,

invariant for A
FA := {x ∈ X| A(x) = x} - the fixed points set of A.
We consider the Banach space X = C([a, b] ,B) endowed with the Chebyshev

norm

∥x∥C := max
t∈[a,b]

|x(t)| , for all x ∈ C([a, b] ,B) ,

where (B, +, R, |·|) is a Banach space.
In the section 2, to study the existence and uniqueness of the solution of inte-

gral equation (1), we need the following definitions and results (see [3], [11], [13],
[17] and [18]).

Let {x(t)} be a set of functions x ∈ C([a, b] ,B).

Definition 1. The functions x(t) are called equal bounded functions on the interval
[a, b], if there exists M > 0 such that

|x(t)| ≤ M for all t ∈ [a, b] and x(t) ∈ {x(t)}, x ∈ C([a, b] ,B).

Definition 2. The functions x(t) are called equal continuous functions on the interval
[a, b], if ∀ε > 0, ∃η > 0 such that for each function x(t) ∈ {x(t)}, x ∈ C([a, b] ,B),
we have

|x(t′′)− x(t′)| ≤ ε for all t′′, t′ ∈ [a, b] and |t′′ − t′| < η.

Theorem 1. (Ascoli-Arzela). A subset of the functions from C([a, b] ,B) is compact if
and only if this subset is equal bounded and equal continuous.

Theorem 2. (Schauder). Let X be a Banach space and Y ⊂ X be a nonempty, bounded,
convex and closed set. If A : Y → Y is a completely continuous operator, then A has at
least one fixed point.

Theorem 3. (Contraction Principle) Let (X, d) be a complete metric space and A : X →
X an α-contraction, (α < 1). In these conditions we have:

(i) FA = {x∗};
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(ii) An(x0) → x∗, as n → ∞;

(iii) d(x∗, An(x0)) ≤
αn

1− α
d(x0, A(x0)).

In order to study the data dependence of the solution of integral equation (1),
in the section 3, we need the following result (see [18]).

Theorem 4. (General data dependence theorem) Let (X, d) be a complete metric space
and A,B : X → X two operators. We suppose that:

(i) A is an α-contraction (α < 1) and FA = {x∗
A};

(ii) x∗
B ∈ FB ;

(iii) there exists η > 0 such that d(A(x), B(x)) < η for all x ∈ X .
In these conditions we have

d(x∗
A, x

∗
B) ≤

η

1− α
.

3. THE EXISTENCE OF THE SOLUTION

In this section we will apply the Contraction Principle and the Schauder’s the-
orem in order to obtain several results of existence and of existence and unique-
ness of the solution of integral equation (1). We will study the existence of the
solution in the C([a, b],B) space and in the B (f ; r) ⊂ C([a, b],B) sphere.

A. The existence of the solution in space

We consider the nonlinear Fredholm integral equation with modified argu-
ment (1) and assume that the following conditions are satisfied:

(a1)K ∈ C([a, b]× [a, b]× B3,B);
(a2) f ∈ C([a, b],B).
In addition, suppose that
(a3) there exists MK > 0 such that

|K(t, s, u1, u2, u3)| ≤ MK , for all t ∈ [a, b], u1, u2, u3 ∈ B .

Theorem 5. Suppose that the conditions (a1)-(a3) are satisfied. Then the integral equa-
tion (1) has at least one solution x∗ ∈ C([a, b],B).

Proof. We attach to the integral equation (1), the operator A : C([a, b],B) →
C([a, b],B), defined by

A(x)(t) :=

∫ b

a

K(t, s, x(s), x(a), x(b))ds+ f(t), (2)

for all t ∈ [a, b].
Now, using the Chebyshev norm, we obtain

∥A(x)∥C ≤ ∥f∥C +MK(b− a) , for all x ∈ C([a, b],B) .
Let Y ⊂ C([a, b],B) a bounded subset. Then A(Y ) is also a bounded subset.

From the uniform continuity of K with respect to t, it follows that A(Y ) is equal
continuous. Therefore, A(Y ) is a compact subset.

Let Y = convA(C([a, b],B)) .
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On the other hand, by the Ascoli-Arzela’s theorem it results that A is a completely
continuous operator.

Since Y is an invariant subset by A, i.e. Y ∈ I(A), it follows that the conditions
of the Schauder’s theorem are satisfied and the proof is complete. �

Suppose now that the following conditions are satisfied:
(a4) there exists L > 0 such that

|K(t, s, u1, u2, u3)−K(t, s, v1, v2, v3)| ≤
≤ L (|u1 − v1|+ |u2 − v2|+ |u3 − v3|) ,

for all t, s ∈ [a, b], ui, vi ∈ B , i = 1, 3;
(a5) 3L(b − a) < 1 and we have the following existence and uniqueness theo-

rem:

Theorem 6. Suppose that the conditions (a1)-(a2) and (a4)-(a5) are satisfied. Then the
integral equation (1) has a unique solution x∗ ∈ C([a, b],B) .

Proof. We attach to the integral equation (1), the operator A : C([a, b],B) →
C([a, b],B), defined by the relation (2). The set of the solutions of integral equa-
tion (1) coincides with the set of the fixed points of the operator A. By (a4) and
using the Chebyshev norm we have

∥A(x1)−A(x2)∥C ≤ 3L (b− a) ∥x1 − x2∥C
and therefore, by (a5) it results that the operator A is an α-contraction with the
coefficient α = 3L (b− a). The proof is complete. �

B. The existence of the solution in sphere

We suppose that
(a′1)K ∈ C([a, b]× [a, b]× J3,B), J ⊂ B is a closed subset,

and also, suppose that the condition (a2) is satisfied.
In addition, we denote with MK a positive constant such that, for the restric-

tion K|[a,b]×[a,b]×J3 , J ⊂ B compact, we have

|K(t, s, u1, u2, u3)| ≤ MK , for all t ∈ [a, b], u1, u2, u3 ∈ J . (3)
and suppose that the invariability condition of the sphere B(f ; r) ⊂ C([a, b],B) is
satisfied, i.e.

(b1)MK(b− a) ≤ r .

Theorem 7. Suppose that the conditions (a′1), (a2) and (b1) are satisfied. Then the
integral equation (1) has at least one solution x∗ ∈ B(f ; r) ⊂ C([a, b],B).

Proof. We attach to the integral equation (1), the operator A : B(f ; r) → C([a, b],B),
defined by the relation (2), where r is a real positive number which satisfies the
condition below: [

x ∈ B(f ; r)
]
=⇒ [x(t) ∈ J ⊂ B]

and suppose that there exists at least one number r > 0 with this property.
We establish under what conditions, the sphere B (f ; r) ⊂ C([a, b],B) is an

invariant set for the operator A . We have
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|A(x)(t)− f(t)| =

∣∣∣∣∣
∫ b

a

K(t, s, x(s), x(a), x(b))ds

∣∣∣∣∣ ≤
≤

∫ b

a

|K(t, s, x(s), x(a), x(b))| ds

and by (3) we have

|A(x)(t)− f(t)| ≤ MK(b− a), for all t ∈ [a, b]

and then by (b1) it results that the B(f ; r) sphere is an invariant set for the op-
erator A, i.e. B(f ; r) ∈ I(A). Now, we can consider the operator A : B(f ; r) →
B(f ; r), also noted with A, defined by the same relation (2), where B(f ; r) is a
closed subset of the Banach space C([a, b],B).

Next, we assure the conditions of the Schauder’s theorem.
Since the topology from B(f ; r) ⊂ C([a, b],B) is induced of the topology from

C([a, b],B), it results that the operator A is continuous.
From B(f ; r) ∈ I(A) we have A(B(f ; r)) ⊂ B(f ; r) ⊂ C([a, b],B) and from

A : B(f ; r) → B(f ; r) and using the Chebyshev norm we obtain

∥A(x)∥C ≤ ∥f∥C + r , for all x ∈ B(f ; r),

that leads to the conclusion that the operator A is equal bounded. From the
uniform continuity of the operator A with respect to t it follows that the operator
A is equal continuous. By the Ascoli-Arzela’s theorem, it results that A is a com-
pact operator. The operator A is continuous and compact and, it follows that A is
a completely continuous operator.

The conditions of the Schauder’s theorem are satisfied and the proof of this the-
orem is complete. �

Now, suppose that:
(b2) there exists L > 0 such that

|K(t, s, u1, u2, u3)−K(t, s, v1, v2, v3)| ≤
≤ L (|u1 − v1|+ |u2 − v2|+ |u3 − v3|) ,

for all t, s ∈ [a, b], ui, vi ∈ J , i = 1, 3,
and also, suppose that the condition (a5) is satisfied.

We have the following existence and uniqueness theorem:

Theorem 8. Suppose that the conditions (a′1), (a2), (b1), (b2) and (a5) are satisfied.
Then the integral equation (1) has a unique solution x∗ ∈ B(f ; r) ⊂ C([a, b],B) .

Proof. We attach to the integral equation (1), the operator A : B(f ; r) → C([a, b],B),
defined by the relation (2), where r is a real positive number which satisfies the
condition below: [

x ∈ B(f ; r)
]
=⇒ [x(t) ∈ J ⊂ B]

and suppose that there exists at least one number r > 0 with this property.
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If we use a reasoning as the one used in the proof of theorem 7, we will obtain
that the B(f ; r) sphere is an invariant set for the operator A, and the invariability
condition (b1), of the B(f ; r) sphere, is hold.

Now, we can consider the operator A : B(f ; r) → B(f ; r), also noted with A,
defined by the same relation, where B(f ; r) is a closed subset of the Banach space
C([a, b],B). The set of the solutions of integral equation (1) coincides with the
fixed points set of the operator A.

By a similar reasoning as in the proof of theorem 6 and using the conditions
(b2) and (a5) it results that the operator A is an α-contraction with the coefficient
α = 3L (b− a) . Therefore, the conditions of the Contraction Principle are hold
and it results that the operator A has a unique fixed point and consequently, the
integral equation (1) has a unique solution x∗ ∈ B(f ; r) ⊂ C([a, b],B). The proof
is complete. �

4. THE DATA DEPENDENCE

In what follows our purpose is to establish a result of continuous data depen-
dence of the solution of integral equation (1).

Suppose that the conditions (a′1), (a2), (b1), (b2) and (a5) are satisfied. Then
by theorem 8 it results that the integral equation (1) has a unique solution x∗ ∈
B(f ; r) ⊂ C([a, b],B).

We attach to the integral equation (1), the operator A : B(f ; r) → C([a, b],B),
defined by the relation (2). By (b2) and (a5) it results that the operator A is an
α-contraction with the coefficient α = 3L(b − a) and it follows that the operator
A has a unique fixed point, denoted by x∗

A.
The fixed points set of A coincides with the solutions set of integral equation

(1). Therefore, the integral equation (1) has the unique solution x∗
A.

Now, we consider the perturbed integral equation

y(t) =

∫ b

a

H(t, s, y(s), y(a), y(b))ds+ h(t) , t ∈ [a, b] (4)

and suppose that the following conditions are satisfied:
(d1) H ∈ C([a, b]× [a, b]× J3,B), J ⊂ B is a closed subset;
(d2) h ∈ C([a, b],B);
(d3) denote with MH a positive constant such that for the restriction MH |[a,b]×[a,b]×J3 ,

J ⊂ B compact, we have:

|H(t, s, u1, u2, u3)| ≤ MH , for all t ∈ [a, b], u1, u2, u3 ∈ J ;

(d4)MH(b− a) ≤ r.
Then by the theorem 7 it results that the integral equation (4) has at least one

solution in the B(h; r) ⊂ C([a, b],B) sphere.
We attach to the integral equation (4), the operator B : B(h; r) → B(h; r) ,

defined by

B(y)(t) =

∫ b

a

H(t, s, y(s), y(a), y(b))ds+ h(t) , t ∈ [a, b] ,

which has at least one fixed point, denoted by x∗
B . In addition, suppose that
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(d5) there exists η1 > 0 such that

|K(t, s, u1, u2, u3)−H(t, s, u1, u2, u3)| ≤ η1

for all t, s ∈ [a, b], u1, u2, u3 ∈ J ;
(d6) there exists η2 > 0 such that

|f(t)− h(t)| ≤ η2 for all t, s ∈ [a, b] .

By (d5) and (d6) we have

∥A(x)−B(x)∥ ≤ η1(b− a) + η2, for all x ∈ B(f ; r) ⊂ C([a, b],B) .

Therefore, using the General data dependence theorem we obtain the follow-
ing result:

Theorem 9. Suppose that the conditions (a′1), (a2), (b1), (b2) and (a5) are satisfied
and denote with x∗

A the unique solution of the integral equation (1). Moreover, suppose
that the conditions (d1)-(d5) are satisfied. In these conditions, if x∗

B is a solution of the
perturbed integral equation (4), then we have:

∥x∗
A − x∗

B∥ ≤ η1(b− a) + η2
1− 3L(b− a)

.
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